点分治#
听大佬说淀粉质可好吃了然后去做题的我
作用#
用来求树上的路径问题
比如求有多少个点之间的路径长度为 k 之类的。
步骤#
-
首先求重心,以保证这棵树的层数较少,防止 TLE
-
void getG(int p, int fa) { treeSize[p] = 1;//以当前节点为根的子树大小 sonLargest[p] = 0;//某节点最大的子树大小 for (int i = head[p]; i; i = e[i].nex) { int y = e[i].to; if (y != fa && (v[y] == 0)) { getG(y, p); treeSize[p] += treeSize[y]; sonLargest[p] = max(sonLargest[p], treeSize[y]); } } sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);//把爸爸作为子树也是一种情况(我自己感觉这里要加个 1 但是其他大佬的代码都没加)(虽然好像并没有什么影响) if (sonLargest[p] < sonLargest[root]) root = p; }
-
-
然后从重心开始递归求解
-
void solve(int u) { v[u] = 1; ans += calc(u, 0);//计算当前节点为根,左儿子里的的节点连到右儿子里的节点的路径情况 for (int i = head[u]; i; i = e[i].nex) { int y = e[i].to; if (!v[y]) { ans -= calc(y, e[i].w);//去重 sonLargest[0] = sizeTot = treeSize[u]; root = 0; getG(y, 0); solve(root); } } }
-
去重大概去的是这样的情况
-
-
左儿子 —— 根 —— 右儿子路径求解
-
这个要看具体题目
-
//这是一个求比 k 短的路径的例子 int calc (int p, int de) { newd = 0; int ans = 0; getDep(p, 0, de); sort(dep + 1, dep + 1 + newd); int l = 1, r = newd; while (l < r) { if (dep[l] + dep[r] <= k) { ans += r - l; ++l; } else { --r; } } return ans; }
-
getDep 用来求从 p 到 p 的儿子们的距离
void getDep(int p, int fa, int l) {//l为根到p的距离 dep[++newd] = l; for (int i = head[p]; i; i = e[i].nex) { int y = e[i].to; if (y !=fa && (!v[y])) { getDep(y, p, l + e[i].w); } } }
-
例题#
全是洛谷的
P3806 【模板】点分治 1#
模板题
把询问离线,在 calc 时两两枚举点对,统计所有可能的结果
#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;
struct ed {
int to,w,nex;
} e[MAXN];
int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans[10000000 + 5];
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];
void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
void calc (int p, int de, int add);
int main(void) {
#ifndef ONLINE_JUDGE
long _begin_time = clock();
freopen("in.txt","r",stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d%d", &n, &m);
sizeTot = sonLargest[0] = n;
for (int i = 1; i < n; ++i) {
int p1, p2, w;
scanf("%d%d%d", &p1, &p2, &w);
lineAdd(p1, p2, w);
lineAdd(p2, p1, w);
}
getG(1, 0);
//memset(v, 0, sizeof(v));
solve(root);
for(int i = 1; i <= m; ++i) {
scanf("%d", &k);
printf("ans[k] > 0?"AYE\n":"NAY\n");
}
#ifndef ONLINE_JUDGE
long _end_time = clock();
cout << "time = " << _end_time - _begin_time << "ms" <<endl;
#endif
return 0;
}
void lineAdd(int p1, int p2, int w) {
++newp;
e[newp].w = w;
e[newp].to = p2;
e[newp].nex = head[p1];
head[p1] = newp;
}
void getG(int p, int fa) {
treeSize[p] = 1;
sonLargest[p] = 0;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y != fa && (v[y] == 0)) {
getG(y, p);
treeSize[p] += treeSize[y];
sonLargest[p] = max(sonLargest[p], treeSize[y]);
}
}
sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
if (sonLargest[p] < sonLargest[root]) root = p;
}
void getDep(int p, int fa, int l) {
dep[++newd] = l;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y !=fa && (!v[y])) {
getDep(y, p, l + e[i].w);
}
}
}
void solve(int u) {
v[u] = 1;
calc(u, 0, 1);
for (int i = head[u]; i; i = e[i].nex) {
int y = e[i].to;
if (!v[y]) {
calc(y, e[i].w, -1);
sonLargest[0] = sizeTot = treeSize[u];
root = 0;
getG(y, 0);
solve(root);
}
}
}
void calc (int p, int de, int add) {
newd = 0;
getDep(p, 0, de);
for (int i = 1; i <= newd; ++i) {
for (int j = 1; j <= newd; ++j) {
ans[dep[i] + dep[j]] += add;
}
}
}
P2634 聪聪可可#
getDep 时用dep[0]
记录整除,dep[1]
记录余数为 1 的。。。。。。
calc 中答案等于 dep[0] * dep[0] + dep[1] * dep[2] * 2
#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
#define clear(a) memset(a, 0, sizeof(a))
using namespace std;
const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;
struct ed {
int to,w,nex;
} e[MAXN];
int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans;
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];
void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
int calc (int p, int de);
int gcd (int p1, int p2) {return (p2 % p1 == 0) ? p1 : gcd(p2 % p1, p1);}
int main(void) {
#ifndef ONLINE_JUDGE
long _begin_time = clock();
freopen("in.txt","r",stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d", &n);
sizeTot = sonLargest[0] = n;
for (int i = 1; i < n; ++i) {
int p1, p2, w;
scanf("%d%d%d", &p1, &p2, &w);
lineAdd(p1, p2, w);
lineAdd(p2, p1, w);
}
getG(1, 0);
solve(root);
int fenMu = n * n;
int g = gcd(ans, fenMu);
printf("%d/%d\n", ans / g, fenMu / g);
#ifndef ONLINE_JUDGE
long _end_time = clock();
cout << "time = " << _end_time - _begin_time << "ms" <<endl;
#endif
return 0;
}
void lineAdd(int p1, int p2, int w) {
++newp;
e[newp].w = w;
e[newp].to = p2;
e[newp].nex = head[p1];
head[p1] = newp;
}
void getG(int p, int fa) {
treeSize[p] = 1;
sonLargest[p] = 0;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y != fa && (v[y] == 0)) {
getG(y, p);
treeSize[p] += treeSize[y];
sonLargest[p] = max(sonLargest[p], treeSize[y]);
}
}
sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
if (sonLargest[p] < sonLargest[root]) root = p;
}
void getDep(int p, int fa, int l) {
++dep[l % 3];
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y !=fa && (!v[y])) {
getDep(y, p, (l + e[i].w) % 3);
}
}
}
void solve(int u) {
v[u] = 1;
ans += calc(u, 0);
for (int i = head[u]; i; i = e[i].nex) {
int y = e[i].to;
if (!v[y]) {
ans -= calc(y, e[i].w);
sonLargest[0] = sizeTot = treeSize[u];
root = 0;
getG(y, 0);
solve(root);
}
}
}
int calc (int p, int de) {
dep[0] = dep[1] = dep[2] = 0;
getDep(p, 0, de);
int ans = dep[0] * dep[0] + dep[1] * dep[2] * 2;
return ans;
}
P4178 Tree#
这道题 calc 统计时不能暴力枚举,否则全 TLE
#include<cstdio>
#include<ctime>
#include<cstring>
#include<iostream>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const int MAXN=40000 * 2 + 5, INF=0x3f3f3f3f;
struct ed {
int to,w,nex;
} e[MAXN];
int dep[MAXN];
int newp, root, sizeTot,newd;
int n, m, k;
int ans;
int head[MAXN], dist[MAXN];
int treeSize[MAXN], sonLargest[MAXN]={INF};
bool v[MAXN];
void lineAdd (int p1, int p2, int w);
void getG (int v, int fa);
void getDep (int p, int fa, int l);
void solve (int u);
int calc (int p, int de);
int main(void) {
#ifndef ONLINE_JUDGE
long _begin_time = clock();
freopen("in.txt","r",stdin);
freopen("out.txt", "w", stdout);
#endif
scanf("%d", &n);
sizeTot = sonLargest[0] = n;
for (int i = 1; i < n; ++i) {
int p1, p2, w;
scanf("%d%d%d", &p1, &p2, &w);
lineAdd(p1, p2, w);
lineAdd(p2, p1, w);
}
scanf("%d", &k);
getG(1, 0);
solve(root);
printf("%d\n", ans);
#ifndef ONLINE_JUDGE
long _end_time = clock();
cout << "time = " << _end_time - _begin_time << "ms" <<endl;
#endif
return 0;
}
void lineAdd(int p1, int p2, int w) {
++newp;
e[newp].w = w;
e[newp].to = p2;
e[newp].nex = head[p1];
head[p1] = newp;
}
void getG(int p, int fa) {
treeSize[p] = 1;
sonLargest[p] = 0;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y != fa && (v[y] == 0)) {
getG(y, p);
treeSize[p] += treeSize[y];
sonLargest[p] = max(sonLargest[p], treeSize[y]);
}
}
sonLargest[p] = max(sonLargest[p], sizeTot - treeSize[p] + 1);
if (sonLargest[p] < sonLargest[root]) root = p;
}
void getDep(int p, int fa, int l) {
dep[++newd] = l;
for (int i = head[p]; i; i = e[i].nex) {
int y = e[i].to;
if (y !=fa && (!v[y])) {
getDep(y, p, l + e[i].w);
}
}
}
void solve(int u) {
v[u] = 1;
ans += calc(u, 0);
for (int i = head[u]; i; i = e[i].nex) {
int y = e[i].to;
if (!v[y]) {
ans -= calc(y, e[i].w);
sonLargest[0] = sizeTot = treeSize[u];
root = 0;
getG(y, 0);
solve(root);
}
}
}
int calc (int p, int de) {
newd = 0;
int ans = 0;
getDep(p, 0, de);
sort(dep + 1, dep + 1 + newd);
int l = 1, r = newd;
while (l < r) {
if (dep[l] + dep[r] < k) {
ans += r - l;
++l;
}
else {
--r;
}
}
return ans;
}